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Abstract: Diastereoisomerically pure IV-Boc Z-acyloxazolidines were synthesized from 
glyoxylate. F&action of these heterocycles with Orignard reagenta is highly ste~~~~lcetivc, H? 

enylglyoxal and e.thyl 
mochval I&diols wa 

ultimately obtained after N&protection. hydrolysis and reduction of tbc intermediate a-hydroxy aldehyde. The 
asymmetric inductian can be explained by a chelated model. 

B-Amino alcohols belonging to the ephedrine family are excellent precursors to oxazolidines. These 

heterocycles are among the most widely used chiral auxiliaries for asymmetric transformations of aldehydes; 

therefore, cyclopropanations.la conjugate additionslb and dihydroxylations*c of unsaturated aldehydes. 

alkylations of r_oxo esters,ld syntheses of chiral enaminesle and Diels-Alder reactions,lf have been achieved in 

this way.2 

Most interesting are oxazolidines derived from ephedrine and its analogs since these starting materials a 

cheap and available under both enantiomeric forms. 3 Clearly this explains their renown. It should be noted 

however that the lV.O-acetal moiety is very sensitive to hydrolysis and this problem was addressed by Scolasticdl 

and Hoppes who developed the use of N-tosyl oxazolidines. The electron-withdrawing substituent prevents the 

heterocycle from hydrolysis but deprotection of the aldehyde function now requires a treatment with 1.2- 

ethanedichiol and BF3-Et20 followed by the removal of the dithiolane moiety, 

In order to create an hydroxyl-bearing stereogenic center adjacent to an aldehyde function (Scheme 1). 
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R2: see Table 

we first considered the stereochemical course of nucleophilic addition on N-Boc 2-phenacyloxazolidine 1. This 

hetemcycle was obtained (overall yield: 76%) via two consecutive reactions: lR2S-norephedrine was condensed 

with phenylglyoxal (equimolar ratio, CH2Cl2,4A molecular sieves, rt, 0.5 h) and the resulting oxazolicline was 

treated with di-rerf-butyldicarbonate (Bcc)20 (equimolar ratio, AcOEt, reflux, 1.5 h). Other oxazolidines (i.e. 

substrates 2 and 3) were synthesized, via the Weinreb amide method,6 as shown on Scheme 2. IH and 13C 

NMR spectra show that all oxazolidines were obtained as single diastereomers, and a cis relative geometry was 

assigned to the ring substituents in agreement with well-established results.7 
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The above procedure provides access to various oxazolidines which could not be synthesized by direct 
condensation of an a-keto aldehyde with a @.mino alcohol, as in the case of phenylglyoxal: enolizable dicarbonyl 
compounds are inappropriate to react cleanly in this way.3 

Ph OH x a,b Ph 0 x b COOEt 2 
Ph 0 

- 

x 
)_ COOH 

Me NH2 
4 

Me N\ 

Boc 5 

Me N\ 

Boc 6 

Reagents and conditions: (a) CHOCOOEt, toluene, Dean-Stark; (b) (BocQO. AcOEt, 50 ‘C, 98% from 4; 
(c) LiOH. 90%; (d) DCC, Me(OMe)NHz+ Cl-, pyridine, 70%; (e) n-BuLi. THF. 55%; (f) MeMgI, Et20,93%. 

Scheme 2 

A slow rate of addition of (Boc)pO was crucial to the totally stereoselective production of ester 5. Actually 
both epimeric oxazolidines 8 and 9 (ca. 1: 1 ratio) resulted from the condensation of amino alcohol 4 with ethyl 
glyoxylate and a mixture of the N-Boc derivatives 5 and 10 was obtained when (Boc)20 was added too rapidly. 
On the other hand, a very slow introduction8 of this reagent afforded oxazolidine 5 as the sole product. Since it 
was verified that there is no equilibrium, under these experimental conditions, between IV-Boc oxazolidines 5 and 
10. the above observation is likely to be due to a higher reactivity (k,k > k trons) of oxazolidine 8 whose nitrogen 
electron pait is less crowded by the ring substituents (Scheme 3). 
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Scheme 3 

NMR specq of the products showed that highly stereoselective reactions occurred when various Grignard 
reagents and alIyltrimethylsilane-Tic14 reacted with acyloxazolidines l-3 (Scheme 4) Except for the 
allylmagnesium bromide reagent9 which afforded both diastereomers in a 1: 1 ratio (cf. table), in every other case 
only one stereoisomer was observed and a diastereoisomeric excess higher than 95% can thus be estimated.10 

hoc hoc 
Reagents and conditions: (a) CFjCOOH, CH2Cl2,O ‘C, lh; (b) H20, THF, rt, 1 h; (c) NaBa, EtOH, 0 “C 
(overall yield: 70-80%). 

Scheme 4 
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The produced hydroxy oxaxolidines 11-15 furnished the corresponding 1.2~diols 17-21 by a three-step 
procedure: i) acid-mediated N-B oc deprotection, ii) hydrolysis of the oxaxolidine ring, iii) reduction of the 
resulting aldehyde function (Scheme 4).tt 

Table. Addition of Grganometallic Reagents on 2-Acyloxaxolidlnes 13. 

Substrate 
I 

Organometallics @MY 

CH#H--M&I 
CH$WMgBr 

CH3MgI 
CHz=CH-CHZMgBr 
CH2--CH-CH#iMe3 

CHjMgI 
PhMgBr 

I 
) 3 equiv RMgX, 1.1 equiv Me$i-CHZCH 

I 
=( 

C4Xlditi~S 

THF, OOC 
THF,OOC 
Etfl, 0 “C 
Etfi, 0 “C 

TiQ, CH2Cl2 -78 OC 
Et20.0 OC 
Etfl. 0 “C 

1 Product (yield)b 

11 (69%) 
12 (53%) 
13 (70%) 
14 (54%)C 
14 (96%) 
15 (91%) 
16 (53%) 

_ _. 
:Hp. b)Isolated products. c) In this case, 1d 

was obtained as an epimeric 1: I mixture (see text). 

Absolute configuration of all these 1,Zdiols was determined to be R on the basis of published optical 
rotation values.12 Enantiomeric excesses higher than 95% were ascertained by NMR analysis of the Mosher 
derivatives of the primary alcohols. 14 The totally stereoselective synthesis of the new stereogenic center can be 
rational&d by assuming that the nucleophilic attack onto the Si diastereoface of the cat-bony1 group is directed by 
a chelated transition state (see figure below). 15.16 Inspection of molecular models shows that, under these 
coordinating conditions, there is a severe steric crowding of the Re face by the phenyl and methyl substituents. 

Figure. Si Diastereoface attack onto the acyl group. 

In conclusion, it appears that using the N-Bee group is beneficial: it can be easily introduced and removed, 
and moreover it allows a high level of stereoselectivity owing to its coordinating property towards Lewis acids. 
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